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This paper deals with three-dimensional non-steady eddy current analysis of a rotating machine. In general, high efficiency in 

parallel computing with a moving body is difficult to achieve. The hierarchical domain decomposition method (HDDM) is known as an 

efficient parallel finite element method. However, in cases that involve a moving body, the HDDM with static domain decomposition 

has not attained sufficient parallel efficiency. Moreover, the cost of dynamic domain decomposition is substantial. In this paper, we 

propose a new domain decomposition technique for the HDDM that enables us to achieve efficient scalability on massively parallel 

computers. Our method’s parallel efficiency was 93.3% on 96 nodes (1,536 cores) of the Oakleaf-FX supercomputer. Furthermore, an 

induction motor model with a seven million degrees of freedom mesh whose solution by conventional sequential computation requires 

more than a month was successfully solved in approximately 1.60 hours using the proposed method. 
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I. INTRODUCTION 

OTATING machines such as an electric generator or 

motors is representative. Such devices have become 

essential in our lives; thus, the development of an efficient 

rotating machine has become necessary to reduce cost and 

environmental loading. Designing rotating machines includes 

electromagnetic analysis, which takes substantial time; thus, 

methods for reducing the time steps, such as time periodic 

explicit error correction (TP-EEC) [1]-[2] and time differential 

correction (TDC) [3], and for reducing the computation time, 

such as the parallel iterative method [4]-[5], have been 

proposed. However, these methods cannot utilize massively 

parallel computers efficiently, and still take substantial time to 

analyze a rotating machine. However, for non-linear 

magnetostatic problems, time-harmonic eddy current problems, 

and high-frequency electromagnetic problems, problems with 

billions of degrees of freedom (DOFs) have been solved 

efficiently on the massively parallel computers using the 

hierarchical domain decomposition method (HDDM) [6]-[8]. 

Nevertheless, in cases that involve a moving body, the HDDM 

with static domain decomposition has not attained sufficient 

parallel efficiency. Moreover, the cost of dynamic domain 

decomposition is substantial. In this paper, we propose a new 

domain decomposition technique for the HDDM for analyzing 

devices including moving bodies efficiently on massively 

parallel computers. Then, we confirm the computational 

efficiency of our proposed method through an analysis of a 

simplified induction motor model. 

II. PROPOSED METHOD 

In the HDDM, the analysis domain is decomposed into non-

overlapping subdomains, and then the unknowns are 

partitioned to the interior of the subdomains and the interface 

boundary between subdomains. Further, the Schur 

complement equation derived from the original linear equation 

by the static condensation onto the interface boundary is 

solved in the parallel environment. 

To treat the model that includes moving bodies efficiently 

on massively parallel environments, meshes of stationary and 

moving bodies are decomposed independently. The connection 

surface where bodies come in contact with each other appears 

on the surface of the subdomains; thus, the connection surface 

is treated as the interface boundary shared between 

subdomains. Here, a communication table relating to the 

original interface boundary and communication tables relating 

to the connection surface changing with time evolution are 

prepared separately. Then, they are used in combination at 

each time step. 

III. NUMERICAL EXAMPLES 

A. Model 

The simplified induction motor model is analyzed as a 

numerical example. The mesh of stationary body has 

2,903,040 elements and 4,242,912 nodes, that of moving body 

has 2,808,960 elements and 4,101,120 nodes. Total DOFs are 

7,395,232. In this paper, we use two models. One is a model 

combining the meshes of the stationary and moving bodies 

(Not moving). The other is a model decomposing the meshes 

of the stationary and moving bodies independently; thus, the 

moving body actually moves (Moving). Then, we compare the 

elapsed time. 

The HDDM is implemented by hybrid parallelization. In 

each computer node, one MPI process works, and each MPI 

process starts as many OpenMP threads as cores in each 

computer node. 

B. Strong scaling tests 

To measure the parallel performance, strong scaling tests 

are run on an Oakleaf-FX supercomputer [9]. The Oakleaf-FX 

super computer consists of 4,800 computer nodes of a Fujitsu 

PRIMEHPC FX10. Each computer node has a CPU with 16 
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cores and 32GB memory. Domain decompositions are 

performed to ensure that the total number of subdomains is 

57,600 (TABLE I). 

The Conjugate Gradient (CG) method with the simplified 

block diagonal scaling is applied to solve the Schur 

complement equation of the HDDM. In each subdomain, the 

CG method is used as the solver and its convergence criteria is 

set to 10-9. A shifted incomplete Cholesky factorization is used 

as the preconditioner with the accelerative parameter 1.2. In 

order to fix the total computation amount and observe whether 

the elapsed time becomes shorter depending on the number of 

nodes, the CG method for the Schur complement equation is 

stopped after 100 iterations, and 100 time steps are performed. 

TABLE II shows elapsed times and parallel efficiencies. Fig. 

1 shows speed-up ratios. Parallel efficiencies are over 90% up 

to 96 nodes. Furthermore, speed-up ratios are ideal up to 96 

nodes, too. It is confirmed that the parallel computing with 

moving body is performed without lowering the efficiency. 

Moreover, the elapsed time of “Moving” increases by 

approximately 15%. 

C. Comparison with sequential computation 

In order to compare the computation time with conventional 

sequential computation, NEXST_Magnetic [10] is executed 

using one core of Oakleaf-FX. The simplified induction motor 

model is analyzed 1,200 time steps. As a result, the sequential 

computation takes 3.49 hours for five time steps. On the other 

hand, the proposed method using 48 nodes takes only 

approximately 2 minutes for five time steps, and 8.39 hours 

for 1,200 time steps. Therefore, it is guessed that the 

sequential computation takes over one month for 1,200 time 

steps. Furthermore, its parallel efficiency falls, but the 

proposed method using 384 nodes takes only approximately 

1.60 hours for 1,200 time steps. 
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TABLE I 

NUMBERS OF PARTS AND SUBDOMAINS 

Nodes (cores) 
Not moving 

part × subdomains 

Moving 

part × sugdomains 
(Upper: Stationary body 

Lower: Moving body) 

6 (96) 6 × 9,600 
3 × 9,600 

3 × 9,600 

12 (192) 12 × 4,800 
6 × 4,800 

6 × 4,800 

24 (384) 24 × 2,400 
12 × 2,400 

12 × 2,400 

48 (768) 48 × 1,200 
24 × 1,200 

24 × 1,200 

96 (1,536) 96 × 600 
48 × 600 

48 × 600 

192 (3,072) 192 × 300 
96 × 300 

96 × 300 

384 (6,144) 384 × 150 
192 × 150 

192 × 150 
 

TABLE II 

ELAPSED TIMES AND PARALLEL EFFICIENCIES 

Nodes 

Not moving Moving Ratio [%] 
(Moving / 

Not moving) Time [s] 
Parallel 

efficiency [%] 
Time [s] 

Parallel 

efficiency [%] 

6 7,315 - 8,520 - 116.5 

12 3,637 101.0 4,231 101.3 116.3 

24 1,836 99.5 2,078 103.2 113.2 

48 950 95.8 1,072 99.2 112.9 

96 500 90.9 568 93.3 113.6 

192 300 74.7 330 80.3 108.6 

384 194 58.3 248 53.0 127.9 

 

 
Fig. 1. Speed-up ratios of strong scaling. 


